الجمعة، 27 مارس 2020

Birds

Birds

Birds are a group of warm-blooded vertebrates constituting the class Aves, characterized by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweight skeleton. Birds live worldwide and range in size from the 5 cm (2 in) bee hummingbird to the 2.75 m (9 ft) ostrich. There are about ten thousand living species,[3] more than half of which are passerine, or "perching" birds. Birds have wings whose development varies according to species; the only known groups without wings are the extinct moa and elephant birds. Wings, which evolved from forelimbs, gave birds the ability to fly, although further evolution has led to the loss of flight in some birds, including ratites, penguins, and diverse endemic island species. The digestive and respiratory systems of birds are also uniquely adapted for flight. Some bird species of aquatic environments, particularly seabirds and some waterbirds, have further evolved for swimming.

Birds are a group of feathered theropod dinosaurs, and constitute the only living dinosaurs. Likewise, the closest living relatives of birds are the crocodilians. Birds are descendants of the primitive avialans (whose members include Archaeopteryx) which first appeared about 160 million years ago (mya) in China. According to DNA evidence, modern birds (Neornithes) evolved in the Middle to Late Cretaceous, and diversified dramatically around the time of the Cretaceous–Paleogene extinction event 66 mya, which killed off the pterosaurs and all non-avian dinosaurs.

Many social species pass on knowledge across generations, which is considered a form of culture. Birds are social, communicating with visual signals, calls, and songs, and participating in such behaviours as cooperative breeding and hunting, flocking, and mobbing of predators. The vast majority of bird species are socially (but not necessarily sexually) monogamous, usually for one breeding season at a time, sometimes for years, but rarely for life. Other species have breeding systems that are polygynous (one male with many females) or, rarely, polyandrous (one female with many males). Birds produce offspring by laying eggs which are fertilised through sexual reproduction. They are usually laid in a nest and incubated by the parents. Most birds have an extended period of parental care after hatching.

Many species of birds are economically important as food for human consumption and raw material in manufacturing, with domesticated and undomesticated birds being important sources of eggs, meat, and feathers. Songbirds, parrots, and other species are popular as pets. Guano (bird excrement) is harvested for use as a fertiliser. Birds figure throughout human culture. About 120 to 130 species have become extinct due to human activity since the 17th century, and hundreds more before then. Human activity threatens about 1,200 bird species with extinction, though efforts are underway to protect them. Recreational birdwatching is an important part of the ecotourism industry.
The first classification of birds was developed by Francis Willughby and John Ray in their 1676 volume Ornithologiae.[4] Carl Linnaeus modified that work in 1758 to devise the taxonomic classification system currently in use.[5] Birds are categorised as the biological class Aves in Linnaean taxonomy. Phylogenetic taxonomy places Aves in the dinosaur clade Theropoda.[6]

Definition
Aves and a sister group, the order Crocodilia, contain the only living representatives of the reptile clade Archosauria. During the late 1990s, Aves was most commonly defined phylogenetically as all descendants of the most recent common ancestor of modern birds and Archaeopteryx lithographica.[7] However, an earlier definition proposed by Jacques Gauthier gained wide currency in the 21st century, and is used by many scientists including adherents of the Phylocode system. Gauthier defined Aves to include only the crown group of the set of modern birds. This was done by excluding most groups known only from fossils, and assigning them, instead, to the Avialae,[8] in part to avoid the uncertainties about the placement of Archaeopteryx in relation to animals traditionally thought of as theropod dinosaurs.

Gauthier[9] identified four different definitions for the same biological name "Aves", which is a problem. Gauthier proposed to reserve the term Aves only for the crown group consisting of the last common ancestor of all living birds and all of its descendants, which corresponds to meaning number 4 below. He assigned other names to the other groups.
Aves can mean all archosaurs closer to birds than to crocodiles (alternately Avemetatarsalia)
Aves can mean those advanced archosaurs with feathers (alternately Avifilopluma)
Aves can mean those feathered dinosaurs that fly (alternately Avialae)
Aves can mean the last common ancestor of all the currently living birds and all of its descendants (a "crown group", in this sense synonymous with Neornithes)
Under the fourth definition Archaeopteryx is an avialan, and not a member of Aves. Gauthier's proposals have been adopted by many researchers in the field of palaeontology and bird evolution, though the exact definitions applied have been inconsistent. Avialae, initially proposed to replace the traditional fossil content of Aves, is often used synonymously with the vernacular term "bird" by these researchers.[10]

Most researchers define Avialae as branch-based clade, though definitions vary. Many authors have used a definition similar to "all theropods closer to birds than to Deinonychus."[11][12] Avialae is also occasionally defined as an apomorphy-based clade (that is, one based on physical characteristics). Jacques Gauthier, who named Avialae in 1986, re-defined it in 2001 as all dinosaurs that possessed feathered wings used in flapping flight, and the birds that descended from them.[9][13]

Dinosaurs and the origin of birds
Based on fossil and biological evidence, most scientists accept that birds are a specialised subgroup of theropod dinosaurs,[16] and more specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others.[17] As scientists have discovered more theropods closely related to birds, the previously clear distinction between non-birds and birds has become blurred. Recent discoveries in the Liaoning Province of northeast China, which demonstrate many small theropod feathered dinosaurs, contribute to this ambiguity.[18][19][20]

The consensus view in contemporary palaeontology is that the flying theropods, or avialans, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids.[21] Together, these form a group called Paraves. Some basal members of this group, such as Microraptor, have features which may have enabled them to glide or fly. The most basal deinonychosaurs were very small. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, have been able to glide, or both.[22][23] Unlike Archaeopteryx and the non-avialan feathered dinosaurs, who primarily ate meat, recent studies suggest that the first avialans were omnivores.[24]

The Late Jurassic Archaeopteryx is well known as one of the first transitional fossils to be found, and it provided support for the theory of evolution in the late 19th century. Archaeopteryx was the first fossil to display both clearly traditional reptilian characteristics—teeth, clawed fingers, and a long, lizard-like tail—as well as wings with flight feathers similar to those of modern birds. It is not considered a direct ancestor of birds, though it is possibly closely related to the true ancestor.[25]

Early evolution
The earliest known avialan fossils come from the Tiaojishan Formation of China, which has been dated to the late Jurassic period (Oxfordian stage), about 160 million years ago. The avialan species from this time period include Anchiornis huxleyi, Xiaotingia zhengi, and Aurornis xui.[10]

The well-known early avialan, Archaeopteryx, dates from slightly later Jurassic rocks (about 155 million years old) from Germany. Many of these early avialans shared unusual anatomical features that may be ancestral to modern birds, but were later lost during bird evolution. These features include enlarged claws on the second toe which may have been held clear of the ground in life, and long feathers or "hind wings" covering the hind limbs and feet, which may have been used in aerial maneuvering.[27]

Avialans diversified into a wide variety of forms during the Cretaceous Period.[28] Many groups retained primitive characteristics, such as clawed wings and teeth, though the latter were lost independently in a number of avialan groups, including modern birds (Aves). While the earliest forms, such as Archaeopteryx and Jeholornis, retained the long bony tails of their ancestors,[28] the tails of more advanced avialans were shortened with the advent of the pygostyle bone in the group Pygostylia. In the late Cretaceous, about 100 million years ago, the ancestors of all modern birds evolved a more open pelvis, allowing them to lay larger eggs compared to body size.[29] Around 95 million years ago, they evolved a better sense of smell.[30]

Early diversity of bird ancestors
The first large, diverse lineage of short-tailed avialans to evolve were the enantiornithes, or "opposite birds", so named because the construction of their shoulder bones was in reverse to that of modern birds. Enantiornithes occupied a wide array of ecological niches, from sand-probing shorebirds and fish-eaters to tree-dwelling forms and seed-eaters. While they were the dominant group of avialans during the Cretaceous period, enantiornithes became extinct along with many other dinosaur groups at the end of the Mesozoic era.[28]

Many species of the second major avialan lineage to diversify, the Euornithes (meaning "true birds", because they include the ancestors of modern birds), were semi-aquatic and specialised in eating fish and other small aquatic organisms. Unlike the enantiornithes, which dominated land-based and arboreal habitats, most early euornithes lacked perching adaptations and seem to have included shorebird-like species, waders, and swimming and diving species.

The latter included the superficially gull-like Ichthyornis[32] and the Hesperornithiformes, which became so well adapted to hunting fish in marine environments that they lost the ability to fly and became primarily aquatic.[28] The early euornithes also saw the development of many traits associated with modern birds, like strongly keeled breastbones, toothless, beaked portions of their jaws (though most non-avian euornithes retained teeth in other parts of the jaws).[33] Euornithes also included the first avialans to develop true pygostyle and a fully mobile fan of tail feathers,[34] which may have replaced the "hind wing" as the primary mode of aerial maneuverability and braking in flight.[27]

A study on mosaic evolution in the avian skull found that the last common ancestor of all neornithes might have had a beak similar to that of the modern hook-billed vanga and a skull similar to that of the Eurasian golden oriole. As both species are small aerial and canopy foraging omnivores, a similar ecological niche was inferred for this hypothetical ancestor.[35]

Diversification of modern birds

All modern birds lie within the crown group Aves (alternately Neornithes), which has two subdivisions: the Palaeognathae, which includes the flightless ratites (such as the ostriches) and the weak-flying tinamous, and the extremely diverse Neognathae, containing all other birds.[36] These two subdivisions are often given the rank of superorder,[37] although Livezey and Zusi assigned them "cohort" rank.[6] Depending on the taxonomic viewpoint, the number of known living bird species varies anywhere from 9,800[38] to 10,758.[39]

The discovery of Vegavis, a late Cretaceous member of the Anatidae, proved that the diversification of modern birds started before the Cenozoic era.[40] The affinities of an earlier fossil, the possible galliform Austinornis lentus, dated to about 85 million years ago,[41] are still too controversial to provide a fossil evidence of modern bird diversification.

Most studies agree on a Cretaceous age for the most recent common ancestor of modern birds but estimates range from the Middle Cretaceous[1] to the latest Late Cretaceous.[42] Similarly, there is no agreement on whether most of the early diversification of modern birds occurred before or after the Cretaceous–Palaeogene extinction event.[43] This disagreement is in part caused by a divergence in the evidence; most molecular dating studies suggests a Cretaceous evolutionary radiation, while fossil evidence points to a Cenozoic radiation (the so-called 'rocks' versus 'clocks' controversy). Previous attempts to reconcile molecular and fossil evidence have proved controversial,[43][44] but more recent estimates, using a more comprehensive sample of fossils and a new way of calibrating molecular clocks, showed that while modern birds originated early in the Late Cretaceous, a pulse of diversification in all major groups occurred around the Cretaceous–Palaeogene extinction event.[45]

Birds live and breed in most terrestrial habitats and on all seven continents, reaching their southern extreme in the snow petrel's breeding colonies up to 440 kilometres (270 mi) inland in Antarctica.[52] The highest bird diversity occurs in tropical regions. It was earlier thought that this high diversity was the result of higher speciation rates in the tropics; however recent studies found higher speciation rates in the high latitudes that were offset by greater extinction rates than in the tropics.[53] Many species migrate annually over great distances and across oceans; several families of birds have adapted to life both on the world's oceans and in them, and some seabird species come ashore only to breed,[54] while some penguins have been recorded diving up to 300 metres (980 ft) deep.[55]

Many bird species have established breeding populations in areas to which they have been introduced by humans. Some of these introductions have been deliberate; the ring-necked pheasant, for example, has been introduced around the world as a game bird.[56] Others have been accidental, such as the establishment of wild monk parakeets in several North American cities after their escape from captivity.[57] Some species, including cattle egret,[58] yellow-headed caracara[59] and galah,[60] have spread naturally far beyond their original ranges as agricultural practices created suitable new habitat.
Skeletal system
The skeleton consists of very lightweight bones. They have large air-filled cavities (called pneumatic cavities) which connect with the respiratory system.[61] The skull bones in adults are fused and do not show cranial sutures.[62] The orbits are large and separated by a bony septum. The spine has cervical, thoracic, lumbar and caudal regions with the number of cervical (neck) vertebrae highly variable and especially flexible, but movement is reduced in the anterior thoracic vertebrae and absent in the later vertebrae.[63] The last few are fused with the pelvis to form the synsacrum.[62] The ribs are flattened and the sternum is keeled for the attachment of flight muscles except in the flightless bird orders. The forelimbs are modified into wings.[64] The wings are more or less developed depending on the species; the only known groups that lost their wings are the extinct moa and elephant birds.[65]

Excretory system
Like the reptiles, birds are primarily uricotelic, that is, their kidneys extract nitrogenous waste from their bloodstream and excrete it as uric acid, instead of urea or ammonia, through the ureters into the intestine. Birds do not have a urinary bladder or external urethral opening and (with exception of the ostrich) uric acid is excreted along with faeces as a semisolid waste.[66][67][68] However, birds such as hummingbirds can be facultatively ammonotelic, excreting most of the nitrogenous wastes as ammonia.[69] They also excrete creatine, rather than creatinine like mammals.[62] This material, as well as the output of the intestines, emerges from the bird's cloaca.[70][71] The cloaca is a multi-purpose opening: waste is expelled through it, most birds mate by joining cloaca, and females lay eggs from it. In addition, many species of birds regurgitate pellets.[72]

Males within Palaeognathae (with the exception of the kiwis), the Anseriformes (with the exception of screamers), and in rudimentary forms in Galliformes (but fully developed in Cracidae) possess a penis, which is never present in Neoaves.[73][74] The length is thought to be related to sperm competition.[75] When not copulating, it is hidden within the proctodeum compartment within the cloaca, just inside the vent.

The digestive system of birds is unique, with a crop for storage and a gizzard that contains swallowed stones for grinding food to compensate for the lack of teeth.[76] Most birds are highly adapted for rapid digestion to aid with flight.[77] Some migratory birds have adapted to use protein stored in many parts of their bodies, including protein from the intestines, as additional energy during migration.[78]

Respiratory and circulatory systems
Birds have one of the most complex respiratory systems of all animal groups.[62] Upon inhalation, 75% of the fresh air bypasses the lungs and flows directly into a posterior air sac which extends from the lungs and connects with air spaces in the bones and fills them with air. The other 25% of the air goes directly into the lungs. When the bird exhales, the used air flows out of the lungs and the stored fresh air from the posterior air sac is simultaneously forced into the lungs. Thus, a bird's lungs receive a constant supply of fresh air during both inhalation and exhalation.[79] Sound production is achieved using the syrinx, a muscular chamber incorporating multiple tympanic membranes which diverges from the lower end of the trachea;[80] the trachea being elongated in some species, increasing the volume of vocalisations and the perception of the bird's size.[81]

In birds, the main arteries taking blood away from the heart originate from the right aortic arch (or pharyngeal arch), unlike in the mammals where the left aortic arch forms this part of the aorta.[62] The postcava receives blood from the limbs via the renal portal system. Unlike in mammals, the circulating red blood cells in birds retain their nucleus.[82]

Heart type and features
The avian circulatory system is driven by a four-chambered, myogenic heart contained in a fibrous pericardial sac. This pericardial sac is filled with a serous fluid for lubrication.[83] The heart itself is divided into a right and left half, each with an atrium and ventricle. The atrium and ventricles of each side are separated by atrioventricular valves which prevent back flow from one chamber to the next during contraction. Being myogenic, the heart's pace is maintained by pacemaker cells found in the sinoatrial node, located on the right atrium.

The sinoatrial node uses calcium to cause a depolarising signal transduction pathway from the atrium through right and left atrioventricular bundle which communicates contraction to the ventricles. The avian heart also consists of muscular arches that are made up of thick bundles of muscular layers. Much like a mammalian heart, the avian heart is composed of endocardial, myocardial and epicardial layers.[83] The atrium walls tend to be thinner than the ventricle walls, due to the intense ventricular contraction used to pump oxygenated blood throughout the body. Avian hearts are generally larger than mammalian hearts when compared to body mass. This adaptation allows more blood to be pumped to meet the high metabolic need associated with flight.[84]

Organisation
Birds have a very efficient system for diffusing oxygen into the blood; birds have a ten times greater surface area to gas exchange volume than mammals. As a result, birds have more blood in their capillaries per unit of volume of lung than a mammal.[84] The arteries are composed of thick elastic muscles to withstand the pressure of the ventricular contractions, and become more rigid as they move away from the heart. Blood moves through the arteries, which undergo vasoconstriction, and into arterioles which act as a transportation system to distribute primarily oxygen as well as nutrients to all tissues of the body.[85] As the arterioles move away from the heart and into individual organs and tissues they are further divided to increase surface area and slow blood flow. Blood travels through the arterioles and moves into the capillaries where gas exchange can occur.

Capillaries are organized into capillary beds in tissues; it is here that blood exchanges oxygen for carbon dioxide waste. In the capillary beds, blood flow is slowed to allow maximum diffusion of oxygen into the tissues. Once the blood has become deoxygenated, it travels through venules then veins and back to the heart. Veins, unlike arteries, are thin and rigid as they do not need to withstand extreme pressure. As blood travels through the venules to the veins a funneling occurs called vasodilation bringing blood back to the heart.[85] Once the blood reaches the heart, it moves first into the right atrium, then the right ventricle to be pumped through the lungs for further gas exchange of carbon dioxide waste for oxygen. Oxygenated blood then flows from the lungs through the left atrium to the left ventricle where it is pumped out to the body.

ليست هناك تعليقات:

إرسال تعليق

زياد علي

زياد علي محمد